Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1294748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078000

RESUMO

Introduction: Natriuretic peptide receptor 2 (NPR2 or NPR-B) plays a central role in growth development and bone morphogenesis and therefore loss-of-function variations in NPR2 gene have been reported to cause Acromesomelic Dysplasia, Maroteaux type 1 and short stature. While several hypotheses have been proposed to underlie the pathogenic mechanisms responsible for these conditions, the exact mechanisms, and functional characteristics of many of those variants and their correlations with the clinical manifestations have not been fully established. Methods: In this study, we examined eight NPR2 genetic missense variants (p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg318Gly, p.Arg388Gln, p.Arg495Cys, p.Arg557His, and p.Arg932Cys) Acromesomelic Dysplasia, Maroteaux type 1 and short stature located on diverse domains and broadly classified as variants of uncertain significance. The evaluated variants are either reported in patients with acromesomelic dysplasia in the homozygous state or short stature in the heterozygous state. Our investigation included the evaluation of their expression, subcellular trafficking and localization, N-glycosylation profiles, and cyclic guanosine monophosphate (cGMP) production activity. Results and Discussion: Our results indicate that variants p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg388Gln have defective cellular trafficking, being sequestered within the endoplasmic reticulum (ER), and consequently impaired cGMP production ability. Conversely, variants p.Arg318Gly, p.Arg495Cys, and p.Arg557His seem to display a non-statistically significant behavior that is slightly comparable to WT-NPR2. On the other hand, p.Arg932Cys which is located within the guanylyl cyclase active site displayed normal cellular trafficking profile albeit with defective cGMP. Collectively, our data highlights the genotype-phenotype relationship that might be responsible for the milder symptoms observed in short stature compared to acromesomelic dysplasia. This study enhances our understanding of the functional consequences of several NPR2 variants, shedding light on their mechanisms and roles in related genetic disorders which might also help in their pathogenicity re-classification.

2.
Traffic ; 24(8): 312-333, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188482

RESUMO

Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas , Animais , Humanos , Proteólise , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Fenótipo , Mamíferos/genética , Mamíferos/metabolismo
3.
Lipids Health Dis ; 22(1): 69, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248472

RESUMO

BACKGROUND AND AIMS: The accumulation of misfolded proteins, encoded by genetic variants of functional genes leads to Endoplasmic Reticulum (ER) stress, which is a critical consequence in human disorders such as familial hypercholesterolemia, cardiovascular and hepatic diseases. In addition to the identification of ER stress as a contributing factor to pathogenicity, extensive studies on the role of oxidized Low-Density Lipoprotein (oxLDL) and its ill effects in expediting cardiovascular diseases and other metabolic comorbidities are well documented. However, the current understanding of its role in hepatic insults needs to be revised. This study elucidates the molecular mechanisms underlying the progression of oxLDL and ER stress-induced cytotoxicity in HepG2. METHODS: HepG2 cells stably expressing wild-type Low-Density lipoprotein receptor (WT-LDLR) and missense variants of LDLR that are pathogenically associated with familial hypercholesterolemia were used as the in vitro models. The relative mRNA expression and protein profiles of ER stress sensors, inflammatory and apoptotic markers, together with cytotoxic assays and measurement of mitochondrial membrane potential, were carried out in HepG2 cells treated with 100 µg per ml oxLDL for 24 to 48 h. 1-way or 2-way ANOVA was used for statistical analyses of datasets. RESULTS: ER stress responses are elicited along all three arms of the unfolded protein response (UPR), with adverse cytotoxic and inflammatory responses in oxLDL-treated conditions. Interestingly, oxLDL-treated ER-stressed HepG2 cells manifested intriguingly low expression of BiP- the master regulator of ER stress, as observed earlier by various researchers in liver biopsies of Non-Alcoholic Steatohepatitis (NASH) patients. This study shows that overexpression of BiP rescues hepatic cells from cytotoxic and inflammatory mechanisms instigated by ER stress in combination with oxLDL, along the ER and mitochondrial membrane and restores cellular homeostasis. CONCLUSION: The data provide interesting leads that identify patients with familial hypercholesterolemia conditions and potentially other Endoplasmic Reticulum Associated Degradation (ERAD) diseases as highly susceptible to developing hepatic insults with molecular signatures like those manifested in Non-Alcoholic Fatty Liver Disease (NAFLD) and NASH. LIMITATIONS AND FUTURE PERSPECTIVES: Although the use of HepG2 cells as the model is a major caveat of the study, the findings of this research may be used as the pilot study to expand further investigations in primary hepatocytes or iPSC- derived cellular models.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hiperlipoproteinemia Tipo II , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células Hep G2 , Projetos Piloto , Lipoproteínas LDL/farmacologia , Estresse do Retículo Endoplasmático/genética , Hiperlipoproteinemia Tipo II/genética
4.
Cell Death Dis ; 13(8): 670, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915082

RESUMO

Obesity is a multigene disorder. However, in addition to genetic factors, environmental determinants also participate in developing obesity and related pathologies. Thus, obesity could be best described as a combination of genetic and environmental perturbations often having its origin during the early developmental period. Environmental factors such as energy-dense food and sedentary lifestyle are known to be associated with obesogenicity. However, the combinatorial effects of gene-environment interactions are not well understood. Understanding the role of multiple genetic variations leading to subtle gene expression changes is not practically possible in monogenic or high-fat-fed animal models of obesity. In contrast, human induced pluripotent stem cells (hiPSCs) from individuals with familial obesity or an obesogenic genotype could serve as a good model system. Herein, we have used hiPSCs generated from normal and genetically obese subjects and differentiated them into hepatocytes in cell culture. We show that hepatocytes from obese iPSCs store more lipids and show increased cell death than normal iPSCs. Whole transcriptome analyses in both normal and obese iPSCs treated with palmitate compared to control revealed LXR-RXR and hepatic fibrosis pathways were enriched among other pathways in obese iPSCs compared to normal iPSCs. Among other genes, increased CD36 and CAV1 expression and decreased expression of CES1 in obese iPSCs could have been responsible for excess lipid accumulation, resulting in differential expression of genes associated with hepatic fibrosis, a key feature of non-alcoholic fatty liver disease (NAFLD). Our results demonstrate that iPSCs derived from genetically obese subjects could serve as an excellent model to understand the effects of this multigene disorder on organ development and may uncover pathologies of NAFLD, which is highly associated with obesity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hepatopatia Gordurosa não Alcoólica , Animais , Diferenciação Celular , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo
5.
Front Cell Dev Biol ; 9: 674103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124059

RESUMO

The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.

6.
Front Genet ; 11: 570355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173538

RESUMO

Familial hypercholesterolemia (FH) is an autosomal genetic disease characterized by high serum low-density lipoprotein (LDL) content leading to premature coronary artery disease. The main genetic and molecular causes of FH are mutations in low-density lipoprotein receptor gene (LDLR) resulting in the non-clearance of LDL from the blood by hepatocytes and consequently the formation of plaques. LDLR is synthesized and glycosylated in the endoplasmic reticulum (ER) and then transported to the plasma membrane via Golgi. It is estimated that more than 50% of reported FH-causing mutations in LDLR result in misfolded proteins that are transport-defective and hence retained in ER. ER accumulation of misfolded proteins causes ER-stress and activates unfolded protein response (UPR). UPR aids protein folding, blocks further protein synthesis, and eliminates misfolded proteins via ER-associated degradation (ERAD) to alleviate ER stress. Various studies demonstrated that ER-retained LDLR mutants are subjected to ERAD. Interestingly, chemical chaperones and genetic or pharmacological inhibition of ERAD have been reported to rescue the transport defective mutant LDLR alleles from ERAD and restore their ER-Golgi transport resulting in the expression of functional plasma membrane LDLR. This suggests the possibility of pharmacological modulation of proteostasis in the ER as a therapeutic strategy for FH. In this review, we picture a detailed analysis of UPR and the ERAD processes activated by ER-retained LDLR mutants associated with FH. In addition, we discuss and critically evaluate the potential role of chemical chaperones and ERAD modulators in the therapeutic management of FH.

7.
Reprod Fertil Dev ; 28(6): 713-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25359468

RESUMO

Loss of function of TAR DNA-binding protein (TDP-43) has been implicated in neurodegenerative disorders in both humans and animal models. TDP-43 has also been shown to be cis-acting transcriptional repressor of the acrosome vesicle (Acrv) gene in mice. In the present study, we investigated the expression of the TDP-43 transcript (TARDBP) and protein in germ cells from 11 fertile and 98 subfertile men to verify its potential association with poor seminograms. The expression profile of TDP-43 was characterised in immature germ cells and spermatozoa from semen from fertile and subfertile men using reverse transcription-polymerase chain reaction, western blotting and immunofluorescence. Although germ cells from subfertile men tested negative for TARDBP, the full-length message of the same was detected in fertile men. TDP-43 was detected in spermatozoa from fertile men using western blot analysis and immunofluorescence. The expression of this protein was negligible in spermatozoa from men with primary spermatogenic dysfunction. We conclude that a deficiency in the TDP-43 expression is associated with defective spermatogenesis and male infertility. We propose that TDP-43 could be used as a marker of male factor infertility.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Índia , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteólise , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise do Sêmen , Índice de Gravidade de Doença , Espermatozoides/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...